Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(5): 866-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503867

RESUMO

The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising 'social-ecological hope spots', that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , América do Sul , Ecossistema , Povos Indígenas , Diversidade Cultural
2.
PeerJ ; 6: e6024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519513

RESUMO

BACKGROUND: Nitrogen (N) is an important macronutrient that controls the productivity of ecosystems and biological nitrogen fixation (BNF) is a major source of N in terrestrial systems, particularly tropical forests. Bamboo dominates theses forests, but our knowledge regarding the role of bamboo in ecosystem functioning remains in its infancy. We investigated the importance of a native bamboo species to the N cycle of a Neotropical forest. METHODS: We selected 100 sample units (100 m2 each) in a pristine montane Atlantic Forest, in Brazil. We counted all the clumps and live culms of Merostachys neesii bamboo and calculated the specific and total leaf area, as well as litter production and respective N content. Potential N input was estimated based on available data on BNF rates for the same bamboo species, whose N input was then contextualized using information on N cycling components in the study area. RESULTS: With 4,000 live culms ha-1, the native bamboo may contribute up to 11.7 kg N ha-1 during summer (January to March) and 19.6 kg N ha-1 in winter (July to September). When extrapolated for annual values, M. neesii could contribute more than 60 kg N ha-1y-1. DISCUSSION: The bamboo species' contribution to N input may be due to its abundance (habitat availability for microbial colonization) and the composition of the free-living N fixer community on its leaves (demonstrated in previous studies). Although some N is lost during decomposition, this input could mitigate the N deficit in the Atlantic Forest studied by at least 27%. Our findings suggest that M. neesii closely regulates N input and may better explain the high diversity and carbon stocks in the area. This is the first time that a study has investigated BNF using free-living N fixers on the phyllosphere of bamboo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...